
DPADL: An action language for data processing
domains

I

Keith Golden

NASA Ames Research Center

kgolden @ email, arc. nasa. gov

Abstract

This paper presents DPADL (Data Processing Action Description Language), a language
for describing planning domains that involve data processing. DPADL is a declarative object-

oriented language that supports constraints and embedded Java code, object creation and copy-

ing, explicit inputs and outputs for actions, and metadata descriptions of existing and desired
data. DPADL is supported by the IMAGEbot system, which will provide automation for an

ecosystem forecasting s_ stem called TOPS.

1 Introduction

NASA is a data-collection agency. Terabytes of data are gathered each day by NASA telescopes,

satellites and other spacecraft, a_d processing these data is truly challenging. Current approaches
to data processing were devised When data volumes were small and it was possible for scientists to

"look at" all the data. With the large data volumes now available, increasing levels of automation

are needed if scientists are to avoid drowning in data. This is especially true in the Earth Science

Enterprise, where high bandwidth communication makes it practical to return terabytes per day,
and where the wide variety of instruments and the even wider variety of uses of the data make

scripted approaches to automation too labor intensive.

We are working with Earth scientists to help address this challenge in the context of an ecosys-

tem forecasting system called TOPS (http://www.forestry.umt.edu/ntsg/Projects/TOPS/). Our ap-

proach is to cast the problem of automating data-processing operations as a planning problem.

We have developed a planner-based softbot (software robot), called IMAGEbot, to generate and

execute dataflow programs (plans) in response to data requests. The data processing operations

supported by IMAGEbot include image processing, text processing, managing file archives and

running scientific models. Aspects of the planner are described in [2]. In this paper, we describe

the IMAGEbot action language, which we call DPADL, for Data Processing Action Description

Language. DPADL is a successor to the ADLIM language, described in [3]. A key requirement

of the language is to provide precise causal models of data-processing actions, which can be used

either for plan generation, or to derive metadata descriptions of the outputs of a given plan.
Given the richness and complexity of software systems and data-processing programs, the lan-

guage used to describe them must be expressive. In particular, it must support

' 1

• First-classobjects:Mostthingsin theworldandin softwareenvironmentscanbeviewedas
objectswith certainattributesandrelationsto otherobjects.Forexample,apersonmaybe
describedin termsof name,address,workplace.,etc.,whileafile hasaname,hostlocation,
owner,etc.

• Objectcreationandcopying:Manyprogramscreatenewobjects,suchasfiles,sometimesby
copyingor modifyingotherobjects.Thelanguageshouldhavea simplewayof describing
suchoperations.

• Operationsonsetsof objects:Manyprogramsactonall membersof someset.Forexample,
lpr * printsall files in thecurrentdirectory,andanimageprocessingoperationmayaffect
all pixelsin animageora specifiedregionof animage.

• Integrationwitharun-timeenvironment:It isnotsufficientto generateplans;it isnecessary
to executethem,sotheremustbeawayto describehowto executetheoperationsprovided
by theenvironmentandobtaininformationfromtheenvironment.

• Constraints:Determir_ingtheappropriateparametersfor anactioncanbechallenging.Pa-
rametervaluescandependonotheractionsorobjectsin theplan,viacomplexconstraints.

Wehavedevelopedalanguagefor describingobjectsandactionsin adata-processingdomain.The
languageprovidestight integrationwith theJavarun-timeenvironment.In particular,Javacode
canbeembeddedin theactiondescriptions,plannervariablescanbeboundtoJavaobjectsaswell
asprimitivetypes,andconstraintscanbeenforcedbyinvokingmethodsonthoseobjects.

In theremainderof thepaper,wedescribethelanguagein detail. Theelementsof a domain
descriptionincludespecificationsof types(Section2), functionsandrelations(Section3), goals
(Section5) and actions (Section 6). Definitions of types and functions can include constraints

(Section 4).
At the end of each section, we present a BNF grammar covering the language elements de-

scribed in that section. For e_ample, we have stated so far that domain descriptions include types,

function, goals and actions, and can include embedded Java code. The top-level production rule is:

DOMAIN ::---- (TYPEDEF! FUNCTIONDEFIACTIONDEF I GOALDEFI <INLINE_CODE>)+ <EOF>

where symbols in SMALL CA=S are non-terminals, symbols in <ANGLE_BRACKETS> are termi-

nals, and keywords are shown in typewriter font.

2 Objects and primitive types

The language supports the definition of new types. The keyword for introducing a new type defi-

nition is type. For example

static type Filelame isa string

introduces a new type, Filename, which is a subtype of string. The keyword static means that

no instance of Filename, once created, can ever be changed. A type that is not static is fluent.

Subtypes of ob j e ct may represent Java objects. For example,

2

static type Til._ isa object nmpsto tops.modis.Tile

means that the type Tile corresponds to the Java class tops .modis. Tile.

Alternatively, we can define a type by listing of all possible instances of the type. This is

similar to enumerated types in C/C++, but without the restriction to integral values. As in C/C++,

enumerated values can have symbolic names attached to them.

static type ImaqeFormat = {"JPG", "GIF", "TIFF", "PNG", "XCF", ...};

static type Pro_ectionType = {LAZEA=II, GOODE HOMOL=24, ROBINSON=21, ...};

Like classes in C++ and Java, types can have attributes. For example, file attributes include path-

name and parent directory:

type File isa object {

key Path pathname;

Directory parentDirectory;

Filename filen_me;

}

The keyword key is used to indicate that pathname is a unique identifier for a file, so two

files that have the same pathname must in fact be the same file. When referring to the attribute

of an object, we use a Java-like syntax, for example, f. filename refers to the filename at-

tribute of the object represented by the variable f. Attributes can take arguments. For example,

pic .pixelValue (x, y) refers to the value of the pixel at the x,y coordinates of the image pic.

Although the syntax resembles that of Java method calls, pixelValue (x, y) is simply a parame-

terized attribute, and can be used in exactly the same contexts. For example,

pic2.pixelValue(IC,10) := picl.pixelValue(0,0);

describes an effect that sets the_value of the pixel at coordinates 10,10 in the image pic2 to be

equal to the value of the pixel 0,0 in the image picl.

Object notation is not just syntactic sugar. The planner can reduce search by exploiting the fact

that attributes of static objects don't change once the object is created, and Section 6.3.2 discusses

the role attributes play when objects are copied.

TYPEDEF

TYPEMEMBERS

TYPESPEC

TYPEBODY

MEMBERDEF

MEMBERBODY

PRIMITIVETYPE

TYPENAME

::= (static I fluent)? type ((<IDENTIFIER> =

{ TYPEMEMBERS })[(TYPESPEC))(TYPEBODY I ;)

::= ((<IDENTIFIER> =)? LITERAL) (, TYPEMEMBERS)?

::= PRIMITIVETYPE I (<IDENTIFIER> isa TYPENAME

(implements TYPENAME)?) (mapsto <CLASSNAME>)?

::= { (MEMBERDEF [CONSTRAINTSPEC)* }

::= (static I fluent)? key? TYPENAME <IDENTIFIER>

(PARAMLIST)? (MEMBERBODY [;)

::= { (CONSTRAINTSPEC)* }

::= int lunsignedl real I string I object Iboolean

::= <IDENTIFIER> [PRIMITIVETYPE

3 Functions and relations

Object attributes may be viewed as a functions or relations, where one of the arguments is singled

out as special, namely, the object itself. We can also have functions and relations that are not object

attributes. For example,

fluent real elevation(real lon, real fat);

defines a function that takes two real values, representing longitude and latitude, and returns a

real value representing elevation. There is no special syntax for defining relations; they are just

functions whose value is type boolean. Functions, like attributes, may have zero arguments, in

which case the parentheses are omitted. For example,

fluent Date cur_entDate;

specifies that currentDate is a fluent function taking no arguments. A fluent with no arguments

may be considered a variable,, and a static function with no arguments is essentially a constant.

FUNCTIONDEF

PARAMS

PARAMDEF

::= (static I fluent) TYPENAME (<IDENTIFIER>
I <OPERATOR>) ((PARAMS?)).9 (; I { (CONSTRSPEC)* })

::= (PARAMDEF (, PARAMS).9) I : rest PARAMDEF

::= TYPENAME <IDENTIFIER>

4 Constraints

IMAGEbot uses a constrainl-based planner to reason about the often complex dependencies and

interactions among actions and objects in the plan. Constraints associated with types, attributes

and functions can be selected from a library of constraints or defined in terms of arbitrary Java

code embedded in the type and function definitions. The constraint reasoning system supports

constraints over all primitive types as well as Java objects. It can also handle constraints involving

universal quantification, as discussed in [2].

4.1 Constraints on types

We can define unary constraints on static types, effectively restricting membership of the type to a

proper subset of the parent type. For example,

static t_e File:_ame isa string {

constraint Mal:ches (true, this,

}

"(~[/]+)");

means that filenames must contain at least one character, and they cannot contain the character
'/'. In Unix, this is, in fact, the only limitation on filenames. Matches is a constraint from the

constraint library requiring a string to a match a regular expression. Constraints can also be defined

in terms of arbitrary Java code, as discussed below.

4

4.2 Constraints on attributes

We can define constraints on attributes as well as types. For example,

static type Tile isa object mapsto tops.modis.Tile

key string un_queId {

constraint {

value(this) := $ this.getUID() $;

this(value) := $ Tile. findTile (value) $;

}

means that the uniqueId attribt{te of a (mosaic) Tile can be determined by calling the getUID
method on the Tile, and a [?ileobjectcorrespondingtoa givenuniqueId can be determined by

callingthe method findTile, with theuniqueId as an argument. The textprecedingthe ":="

specifies the return value and parameters of the following Java code. The keyword value refers

to the value of the attribute being defined, in this case uniqueId, and the keyword thin refers

to an object of the type being defined, in this case Tile, so value (this) means that given an

object of type Tile, we can obtain the value of the uniqueId attribute by executing the following

Java code (delimited by $). Conversely, this (value) means that given a uniqueId, we can

find the corresponding Ti 1 e.

The above constraint will only be enforced if there is a singleton domain for some tile or id.

It is also possible to define constraints that work for non-singleton domains, by indicating that an

argument or return value represents an interval (delimited by []) or a finite set (delimited by { }).

For example, one attribute of a Tile is that it covers a given longitude, latitude. Given a particular

longitude and latitude, the constraint solver can invoke a method to find a single tile that covers

it, but it can do even better. Given a rectangular region, represented by intervals of longitude and

latitude, it can invoke a method to find a set of tiles covering that region.

4.3 Constraints on functions

Functions, like attributes, can have constraints associated with them, the only difference being that

the constraints cannot reference_the keyword this, because there is no object to reference. Infix

mathematical operators are also functions, and they can be referenced using a syntax similar to that

used for C++ operator overloading. For example to specify that the "+" operator applied to strings

concatenates them, we can write

static string operator+ (string sl, string s2)

constraint Con=at(value, sl, s2);

}

where Concat is a ternary constraint from the constraint library, specifying that the first argument

is the concatenation of the other two arguments.

CONSTRSPEC ::=

CONSTRAINT ::=

CONSTRARG ::=

CONSTRARG2 ::=

CONSTRARGS ::=

constraint (<IDENTIFIER> ARGLIST ;)
I { (CONSTRAINT)+ })

(CONSTRARG CONSTRARGS : = <INLINE_CODE> ;)

I([CO_STRARG] CONSTRARGS : = [<INLINE_CODE>,
I

<INLINE_CODE>] ;)

I({ CONSTARG } CONSTRARGS -_= { <INLINE_CODE> }
<IDENTIFIER> I value I this

(CONSTRARG I [CONSTRARG] I { CONSTRARG })

(= ADDITIVEEXPRESSlON)?

(CONSTRARG2 [, CONSTRARGS])

;)

5 Goals

Goals are used to describe data products that the system should produce. Data product descriptions

should specify the following four attributes:

• Semantics: the information represented by the data. That is, what facts about the world that

can be inferred from the data contents.

• Syntax: how the information is coded in the data. For example, what pixel values in an

image are used to represent the information.

• Time: what time the information pertains to. For example, we need to be able to distinguish

between rainfall last week,and rainfall last year.
!

• Location: where the data file should be put or delivered.

Time is an optional argument of all fluents, and specifying location requires no special syntax. The

mapping between semantics and syntax is specified using the keyword when. For example, to

specify that a file represents the temperature over a particular region, using the LAZEA projection

and the function tempEncod=ng to map from temperatures to pixel values, we could write:

when (tempEncoding (temperature (long, lat))

&& 0 <= x < _AXX && 0 <= y < MAXY) {

pixelValue (x,y) = t;

}

= t && proj(LAZEA, x,y, long, lat)

We will call the expression inside the parentheses following the keyword when the left-hand side

(LHS) of the goal, and we will call the expression in the braces the right-hand side (RHS). There

are significant differences between the LHS and the RHS of a goal. The LHS implicitly refers to

the initial state (unless another time is specified) and properties of the world, and the RHS refers

to the final state (whenever tile goal achieved) and properties of the data.

!

6

GOALDEF

OREXP

CONDEXP

ANDEXP

EQUALEXP

RELATION EXP

ADDITIVEEXP

MULTIPLEXP

UNARYEXP

PRIMARYEXP

FUNCTION

LITERAL

ARGS

::= goal <IDENTIFIER> (PARAMS?) { ((output I forall

I exists) PARAMS)* OREXP }

::= co.oExP(ll CONDEXP)*

::= (when (ANDEXP) { CONDEXP } (else {

CONDEXI_ })?) I ANDEXP

::= EQUALEXP (&& (EQUALEXP))*

::= RELATIONEXP ((= I ! =) RELATIONEXP)*

::= ADDiTIVEEXP ((< I > I <= I >=) ADDITIVEEXP)*

::= MULTIPLEXP ((+ I -) MULTIPLEXP)*

::= UNARYEXP ((* I / J_) UNARYEXP)*

::= (+ I - I !)? PRIMARYEXP

::= (ANDEXP) I (FUNCTION I this) (. FUNCTION)* I LITERAL

::= <IDENTIFIER> ((ARGS))?

::= <INTEGER_LITERAL> I <FLOATING_POINT_LITERAL>

I <CHARACTER_LITERAL> I <STRING_LITERAL> I <NULL>

I true lfalse

::= ADDITIVEEXPRESSION (, ARGS)?

6 Actions

Actions can be sensors (which produce outputs based on the state of the world) or filters (which

produce outputs based on their inputs), so preconditions and effects describe inputs and outputs

as well as the state of the w orl_ Additionally, actions must be executable, so the procedure for

executing an action is part of the action description.

I ACTIONDEF ::= action <IDENTIFIER> (PARAMS) { ((input I output II forall) PARAMS) I PRECOND I EFFECT I EXEC)* } I

6.1 Inputs, outputs and parameters

As in PDDL[6], actions are parameterized, and parameters are typed. In addition to ordinary

parameters, two kinds of parameters are recognized as unique and are treated somewhat differently,

namely, inputs and outputs.

Outputs represent object,'_ (e.g., files) generated as a result of executing the action. An output

does not exist before the corresponding action is executed, and is always distinct from all other

objects.

Inputs represent objects that are required by the action but are not required to exist after the ac-

tion has been executed. Inputs may come from outputs of other actions or they may be preexisting

objects. In the former case, all preconditions describing attributes of a given static input must be

supported by the same action, since only one action can have produced the output, and once it is

created, no action can change it.

In addition to parameters, inputs and outputs, actions can refer to universally quantified vari-

ables and introduce variables corresponding to new objects with the new keyword, discussed in

Section 6.3.2.
0

6.2 Preconditions

Preconditions describe the conditions that must be true of the world and of the inputs in order for

the action to be executable. Thus, action preconditions need to reference the input variables and

the prior world state, but cannot reference the output variables, which describe objects that don't

exist in the prior state.

Low-level actions, such as filters, can be described purely in terms of the syntactic properties of

the input files. For example, an image-processing operation doesn't care whether the pixels of the

input image represent temperatu_s in Montana or a bowl of fruit. All that matters are the values of

the pixels. Thus, the preconditions for these actions should refer only to properties of the data that

hold in the prior state. Similarly, simple sensors depend only on the immediate state of the world,

so their preconditions shouhl only refer to conditions of the world that hold in the prior state.

However, some high-level actions, such as ecosystem models, expect their inputs to represent

certain information about past states of the world, such as temperature or precipitation, so it is

appropriate for the precondilions of these actions to specify the information content of their inputs,

not just the structure, and te reference states other than the prior state. In other words, precondi-

tions, like goals, can include metadata descriptions, which are described using the keyword when.

I PRECOND ::= precond (OREXP ;)+]

6.3 Effects

Effects are used primarily to describe the outputs generated by an action. Outputs depend on the

state of the world (in the case of sensory actions) or the inputs (in the case of filters), so effects need

to be able to reference both the prior state and next state and both the input and output variables.

I EFFECT ::= effect (WHENEXP)+ I

6.3.1 Conditional effects ,

Conditional effects are the same as in PDDL. As with goals, they are introduced using the keyword

when, but here the LHS reters to the prior state (and input variables), not the initial state. The

RHS describes the next state and output variables, so the combination of the two describes how the

output depends on the input !or on the state of the world).

Stripping away the syntactic sugar, every RHS expression involves setting the (possibly boolean)

value of a function or attribu',e or creating a new object. A static attribute can only be set if it is an

attribute of, a newly created object. We depart from the C++/Java syntax and use the notation ": --"

to denote assignment and "=" to denote equality.

WHENEXP

CONSEQUENT

ASSIGNMENTEXP

CFUNCTION

CARGS

::= (when (ANDEXP) { (WHENEXP)* } (else {

(WHENEXP)* })?) [CONSEQUENT

::= (ASSlGNMENTEXP I NEWDECL)

::= CFUNCTION (• CFUNCTION)* (:- (EQUALITYEXP I NEwExP))? ;

::= <IDENTIFIER> ((CARGS))?

::= (ADDITIVEEXP I NEWEXP) (, CARGS)?

8

o

6.3.2 Object creation and copying

Output variables implicitly describe newly created objects, but it is sometimes necessary to explic-

itly refer to object creation in action effects. For example, an output may be a complex object, such
as a file archive or a list, with an unbounded number of complex sub-elements. Since each of those

sub-elements is (possibly) newly created, we need some way of describing their creation. We do

so using the keyword new.

Additionally, newly created objects may be copies of other objects, possibly with minor changes.

Listing all the ways the new objects are the same as the preexisting objects can be cumbersome and

error-prone, so we would like to simply indicate that one is a copy of the other, and then specify

only the ways in which they differ. We do so using the copyof keyword.

Suppose we have an action whose input, in, is a collection of JPEG files and whose output,

out, is a new collection, in which the files from the input are compressed with quality of 0.75.

£orall Image ori_;

when (input. contains (%orig)) ,{

output.contains (mew Image copyof orig {

quality := min(orig.quality, 0.75); });

}

When an objectiscopied,allattributesof the originalobjectare inheritedby the copy, unless

explicitly overridden. For example, the new Image is identical to the original in every way, except

in quality, which is set to 0.75. Note that this is one way in which attributes of objects are different

from other relations on objects, in. contains (orig) is an attribute of in, but not an attribute of

orig, so afterorig iscopied,in. contains (copy) isnottruebut,forexample, copy. format =

JPEG is true. In contrast, in ADLIM, all relations involving the original assumed to hold for the

copy unless explicitly overridden, so it would be necessary to declare that in. contains (copy) is

false after copying orig to copy.

The copy and the original need not be the same type, as long as one is a subtype of the other or

one imlp:l.ementn the other. All attributes common to both types are copied.

NEWDECL

NEWEXP ::=

ATTRIBUTES ::=

6.4 Execution

::= newTYPENAME <IDENTIFIER> (COl2yOf <IDENTIFIER>)?

(({ (ATTRIBUTES)* }) [;)

l%ew TYPENAME (COpyOf <IDENTIFIER>)?

(({ ATTRIBUTES * }) I ;)

FUNCTION_:---- (EQUALITYEXP ; [NEWEXP)

The procedure for executing an action is specified using inlined Java code.

[EXEC ::= exe¢ <INLINE_CODE> ; I

7 Conclusions and Related Work

We have described DPADL, an action language for data processing domains, which is used in the

IMAGEbot system. The par:;er for the language, and the planner that supports the language, are

9

fully implemented,andweare developing DPADL descriptions for the TOPS ecosystem forecast-

ing system. Currently, a subset of TOPS, dealing with MODIS satellite data, is supported.

It would be great to use the now-standard PDDL[6], the language devised for the AIPS pro-

gramming competitions, rather than write a new language. Unfortunately, PDDL is not adequate

for describing data processing domains. It provides no support for object creation and copying,

no explicit inputs or outputs, ca0not describe information content of data, and does not support

integration with a run-time environmenl_ or constraint reasoning system. There are also syntac-

tic disadvantages, such as lack of functions and object-oriented notation, which could be worked

around but are obstacles to clean domain descriptions. We opted instead to base our language on

the well-known syntax of C÷+ and Java, since many programmers are familiar with that syntax, so

the learning curve for the language should be reduced. An additional motivation was that action

descriptions and program code both describe the same things - state change, conditional on the

current state, so using similar syntax for both is appealing.

Alternatively, we could have used the situation calculus [5], which provides plenty of expres-

sive power, but at a price. We opted instead to make our language as simple as possible, but

no more so. DPADL does not support domain axioms, nondeterministic effects or uncertainty

expressed in terms of possible worlds, and much of the apparent complexity of the language is

handled by a compiler, which reduces complex expressions into primitives that the planner can

cope with. Despite the superficial similarity to program synthesis [7], DPADL action descriptions

are not expressive enough to describe arbitrary program elements, and the plans themselves do not

contain loops or conditionals.
Of the many planning domain description languages languages that have been devised, the

closest to DPADL is ADLIM[3], on which it is based. Advances over ADLIM include tight inte-

gration with the run-time environment (Java) and constraint system and a Java-like object-oriented

syntax that makes it natural to describe objects and their properties. As discussed in Sections 2 and

6.3.2, this is not just syntactic sugar, but encodes valuable information used by the planner.

Collage [4] and MVP [1] were planners that automated image manipulation tasks. However,

they didn't focus as much on accurate causal models of data processing, so their representation

requirements were simpler.

References

[1] S. Chien, E Fisher, E. Lo, H. Mortensen, and R. Greeley. Using artificial intelligence planning

to automate science data analysis for large image database. In Proc. 1997 Conference on

Knowledge Discovery and Data Mining, August 1997.

[2] K. Golden and J. Frank. Universal quantification in a constraint-based planner. In Proc. 6th

Intl. Conf. AI Planning Systems, 2002.

[3] Keith Golden. Acting on information: a plan language for manipulating data. In Proceedings

of the 2nd NASA Intl. Planning and Scheduling workshop, pages 28-33, 2000. Published as

NASA Conference Proceedings NASA/CP-2000-209590.

[4] A. L. Lansky and A. G. Philpot. AI-based planning for data analysis tasks. In Proceedings of

the Ninth IEEE Conference on Artificial Intelligence for Applications (CAIA-93), 1993.

I

10

!

[5] J. McCarthy and E J. Hayes. Some philosophical problems from the standpoint of artificial

intelligence. In Machine Intelligence 4, pages 463-502. Edinburgh University Press, 1969.

[6] D. McDermott. The 19!)8 AI Planning Systems Competition.

[7] M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and I. Underwood. Deductive composition
of astronomical software from subroutine libraries. In Proceedings of the 12th Conference on

Automated Deduction,] 994.

|

11

